

Material Data Sheet for Reaction Bonded Silicon Nitride

	eri	

3.

QSIL Denotation SN-RB Material Description Reaction Bonded Silicon Nitride

2.

'				
General Properties				
Chemical Composition			Si ₃ N ₄ (wt%)	> 99
			Residual Si (wt%)	< 1
Bulk Density	ρ	[1]	(g/cm³)	2.4
Residual Porosity			(%)	< 25
Open Porosity			(%)	under investigation
Grain Size (Longitudinal Direction)			(μm)	0.5 - 20
Mechanical Propertie	es			
Hardness		[2]	(GPa)	> 5
Compressive Strength			(MPa)	550
Bendig Strength	σ	[3]	(MPa)	200
Weibull-Modulus	m			25
Fracture Toughness	K _{Ic}	[4]	(MPam ^{1/2})	4.0
Youngs Modulus	E		(GPa)	140
Poisson Ratio	ν			0.27
Thermal Properties				
Max. Working Temper	ature			
- Inert Atmosphere			(°C)	1600

4.

 Inert Atmosphere 	(°C)	1600
- Air	(°C)	1400
Specific Heat Capacity	(J/kgK)	under investigation
Thermal Conductivity λ (20°C) (W/mK)	16
Coeff. of Thermal Expansion α RT-10	00°C (10 ⁻⁶ K ⁻¹)	3.0
Coeff. of Thermal Expansion α RT \pm 2	20°C (10 ⁻⁶ K ⁻¹)	1.2
Thermal Shock Parameter R ₁ [5]	(K)	350
Thermal Shock Parameter R_2 [6]	(W/m)	5560

- [1] Determination of density and porosity according to DIN 623-2
- [2] Hardness according to DIN EN 843-4
- [3] Average value of 4-point bending strength at room temperature according to DIN EN 843-1
- [4] Calculated from crack length derived from Vickers hardness indentation, according to Niihara
- [5] Critical temperature difference for an infinite high heat transfer (quenching)
- [6] Thermal shock coefficient at finite constant heat transfer (slowly heating)

The material characterisitics listed above are measured at testing samples. They cannot be transfered to components with different size, shape or surface properties. We reserve the right to alter properties within the scope of technical progress or new developments.