

97.5

Material Data Sheet for Hot Pressed Silicon Carbide

_		_
1.	Materia	
	Maieria	
	mucona	

FCT Denotation	SC-HP
Material Description	Hot Pressed Silicon Carbide (HPSN)

2. General Properties

Chemical Composition

			C / B_4C (wt%)	2.5
Bulk Density	ρ	[1]	(g/cm³)	3.10 - 3.17
Residual Porosity			(%)	< 3
Open Porosity			(%)	≤ 2
Grain Size (Longitudinal Direction)			(µm)	1 - 5

SiC (wt.-%)

3. Mechanical Properties

moonamoan i roportio	_			
Hardness		[2]	(GPa)	26.0
Compressive Strength			(MPa)	3000
Bendig Strength	σ	[3]	(MPa)	420
Weibull-Modulus	m			10
Fracture Toughness	\mathbf{K}_{lc}	[4]	(MPam ^{1/2})	3.5
Youngs Modulus	E		(GPa)	400
Poisson Ratio	ν			0.15

4. Thermal Properties

Max. Working Temperature

maxi rroming romporatoro				
- Inert Atmosphere			(°C)	1900
- Air			(°C)	1600
Thermal Conductivity	λ (20)°C)	(W/mK)	100
Coeff. of Thermal Expansion α RT-1000°C			(10^{-6}K^{-1})	4.5
Coeff. of Thermal Expansion	αRT	± 20°C	(10^{-6}K^{-1})	2.5
Thermal Shock Parameter	R_1	[5]	(K)	189
Thermal Shock Parameter	R_2	[6]	(W/m)	18889

5. Specific Properties

		4.08
Electrical Resistance (20 °C)	(Ωcm)	10°

- Determination of density and porosity according to DIN 623-2 [1]
- Average value of 4-point bending strength at room temperature according to DIN EN 843-1 [2]
- [3] Hardness according to DIN EN 843-4
- Calculated from crack length derived from Vickers hardness indentation, according to Niihara $R_1 = \frac{\sigma(1-\nu)}{R_1}$ [4] Critical temperature difference for an infinite high heat transfer (quenching) [5]
- $R_2 = \frac{\sigma(1-\nu)}{r} \lambda$ [6] Thermal shock coefficient at finite constant heat transfer (slowly heating)

The material characterisitics listed above are measured at testing samples. They cannot be transferred to components with different size, shape or surface properties. We reserve the right to alter properties within the scope of technical progress or new developments.

Editor: QMB Date: 2022-02-07

Revision: 05